C Coding Standard

and
Programming Guidelines

Status : August 31, 2009
Version: 1.3.6

Author : Armin Kurt

Table of Contents 1

Table of Contents

A [o 14 oo 1¥ o1 1o 1o BT PO P PP OPPPPPPUPRPN 3
O R = (=T =T o (o] P TP UPPPPTPPPPPN 3
2 Programming GUIAEIINEScoi ittt bb e e s e s sanneeas 4
2.1 GENEIAI RUIES........eiiiiiieiee ettt e bt e e st bt e e e st b et e e abb e e e e sbbeeeesbreeeeans 4
2.2 NAMING CONVENTIONSeiiiiiitiiee ettt ettt ettt ettt e st et e e s bb e e e e abe e e e e aabe e e e e sabbeeeesabreeeesabbeeeeaanreeeeans 4
2.2.1 MOAUIE NAMES ...ttt ettt e e et bt e e et bt e e e s be e e e e anbr e e e e anbneeeennee 5
2.2.2 FUNCHON NBMES ...ttt ettt s e e e snn e s e e snn e e snr e e e ann e e nnneeaneeens 5
2.2.3 Typedefs and SITUCIUIEScuiiiii it e st e e e e e e e e e s st re e e e e e e e s snnrraeeeaaeeeanans 5
2.2.4 Variables and FUNCHON ParametersS..........coviiiiiriieiieiesiie et 6
2.2.5 MABCIOS ..ottt e e e 7

2.3 WHILE SPACE ...cceieieieieiee e 7
2.3.1 BlANK LINES ...ttt 7
2.3.2 SPACINY -teteee ittt e e e bt e e bt e e e b a e e e abr e e e e abae e e e nene 7
2.3.3 INAENTALION ...ttt e et e et e e e b e e e e e 9
2.3.4 CONtINUALION LINES....ciiiiiiiieiiiiiee ettt e e e e e 9
2.3.5 BraCing SEYIEcooo i 10

A O o] 1 111 0 1=T 0| PP PP P PP PPPPPPPRPRRN 10
2.4.1 BIOCK COMMENTSoeiiiiiiiiiieiieeee ettt et e et e et e s e s e e s e e s e e e s nnnreee s 10
2.4.2 IN-LINE COMMENTScoiiiiiiiie ittt ettt e s e e e s e s e e s nnnreee s 11

2.5 CONIIOl STTUCTUIES.....cteeii ettt ettt et e s e e e s e b e e e e bt e e e are e e e e ennns 11
2.5 I-SETAIEMENT. .. .eeii ittt et s e st e e s st e s et e e s 11
2.5.2 SWILCN-STAIEMENTeiiiiiiiii it e e 12
A TRC I o | g o To | o PSPPI 12
2.5.4 WHIIE LOOP ...ttt ettt ekt s bbbt e e s bt e e e e e e nnree s 12
2.5.5 DO...WHIlE LOOP .ttt ettt ettt e et e e s e e s e s 12

P G U g Tox (1] L PP RP 13
2.6.1 Scope and Calling SChEMEccoiiiiii e 13
2.6.2 FUNCHON RESUILS.eeiiiiiiiii ittt ettt e st e e s e e s nanreee s 13
2.6.3 FUNCHON PAraMELEISeiiiiiiiiiee ettt ettt ettt et e et e e s e e s snnneee s 13
2.6.4 EXTON MESSA0EBS ..tuuuiiiieiiieeiitiie e e et ettt e e e e ettt r e e e e et e ea s e e e e et ee s tab s e e e e e e eta b aeaeeeeeenenen 13

3 Program OrganiZAtiON ...ttt e e e e e e bbbt e e e e e e e e b e b e e et e e e e e e aber e e eeaaeeeaanrraaeeas 14
N I o 1= o [T 1 L= I Yo | PP PTPPPPRPTN 14
N 0 R | (= [T o = OO P PP PP PP PP PPPPPP P 15
3.1.2 VEISION HISTOMY ...ttt ettt e e e e e et e e e e e e e e nnbaeeeaaeeeas 15
3.1.3 MOAUIES USEA ..ottt ettt e e ettt e e e bt e e e e nbe e e e e nneeas 15
3.1.4 Definitions @nd MACIOScii ittt ettt e e st e e e e nnbee e e e snnes 15
3.1.5 Typedefs and SIIUCLUIEScoouuiiiiiiiiee ettt et e s nbre e e e 16

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

3.1.6 EXPOrted VariableScooiiiiiiiiei ettt e e e e e e e e e e e e e 16

R 0 A v o To T (=T N U i 1T 1SR 16
BLL8 EOF 16

3.2 SOUICE FlE LAYOUL.....uiiiieeiis it e e e e ettt e e e e e s s st e e e e e e s e st e e e e aeeesasnntraeeeeeeesaannnrannneeeeesaannnes 16
B.2.1 FHlE HEAUE .ttt ettt e e et e e e e e 17
3.2.2 VEISION HISTOMY ...eiiiiiiii ittt ettt et a bt e s et e e e e e e e e 17
3.2.3 MOAUIES USEA ...ttt ettt a bt e e et e e e e b r e e e e e 17
3.2.4 DefinitioNs AN MACIOSeiiiiiiiiieiiiii ettt e e et e e e ibre e e e e 17
3.2.5 Typedefs and SIIUCIUIESc.uiiiiiiiiiie ittt e e 17
3.2.6 Prototypes of LOCAl FUNCHONScocuuiiiiiiiiie ettt 17
3.2.7 Exported Variablesccccooriiiiii 17
3.2.8 Global Variablescoieiiii 17
3.2.9 EXPOorted FUNCLIONSccoeiieiiieeeee e, 17
3.2.10L0CAI FUNCHIONS ...ttt e e e e e e s 18

B2 ALEOF 18

O N o] o<1 o [G N OO PTOUPPPPPPPPN 19
4.1 Comment Prologues Of FUNCLONSuuiiiiiiiiieiiie ettt 19
4.1.1 Prologue of FUNCLION PrOtOLYPESi.uiiieiiiiii ettt 19
4.1.2 Prologue of Function Implementations............ooceiiiiiiieiiiiie e 19

I N o] 1= o Vo [b Q= ST PP TP PR OPPPRP 20
5.1 Header File TEMPIALEcouiiiieiiiiie ettt e e e e e enenas 20
5.2 Source File TEMPIALEccoovieeeeeee 21

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Introduction 3

1 Introduction

This document contains the guidelines for writing C code for Minoris Financial Software and is
intended for internal use only. Every developer and/or consultant is expected to be familiar with
these guidelines and has to adhere to these.

It is recognized, however, that in some instances it may be necessary to deviate from the rules
given in this document. A formal procedure will be used to authorize these deviations rather
than an individual programmer having discretion to deviate at will.

Every deviation has to be clearly documented in the comments of an effected module or
function so that during code reviews or later maintenance the reasons and the nature of the
exceptions will be understood.

1.1 References

The guidelines described below are a compilation of the most reasonable rules (in the author’s
opinion) for writing readable and structured C code based on the following documents that have
been available at the time of writing:

1) Title: C Style Guide and Programming Guidelines

Author: Peter van der Viugt

Source: http://www.chris-lott.org/resources/cstyle/Peter_CStyleGuide.pdf
2) Title: C Coding Standard

Author: Jean J. Labrosse, (Micrium Inc.)

Source: http://www.validatedsoftware.com/resources/an2000.pdf
3) Title: Software and Automation Systems Branch C++ Style Guide

Company: Goddard Space Flight Center

Source: http://aaaprod.gsfc.nasa.gov/WebSite/Files/Cplus/index.html
4) Title: Recommended C Style and Coding Standards

Author: several authors

Source: http://www.psgd.org/paul/docs/cstyle/cstyle.htm

Chapter 3 of this manual (Program Organization) has been almost completely adopted from “C
Style Guide and Programming Guidelines”. Section 2.3.2 (Spacing) was borrowed entirely from
“C Coding Standard”.

Any copyright and/or intellectual property claims of the authors of the documents
mentioned above is recognized expressly.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 4

2 Programming Guidelines

2.1 General Rules
= All code has to be strictly conforming to the ANSI C (ISO 9899) standard.
®= No compiler warnings should be left and compiler optimizations should be turned off.

= The code should not contain functions that are not called and there should be no unused
variables in the code and also no unrefered #define’d constants.

= Lines shall not exceed 101 characters.

= Return types for functions should be always specified. The check of return values of any
function call is mandatory, even from functions that “cannot” fail.

= Declare each variable in a separate declaration starting in column 1.

= Any variable whose initial value is important should be explicitly initialized.

= Use only one statement per line.

®= |tis NOT allowed to use goto statements.

= Use full parenthesizing for every expression instead on relying on C’s precedence table.

= Use correct type casting in calculations; do not rely on the compiler’s interpretation and
automatic casting.

®= When testing incrementing or decrementing counters, >= or <= instead of == should be
used.

®= The validity of values passed to C standard library functions shall be checked. If possible,
use “wrapped” functions which perform valid parameter checks before calling the original
library function.

= Checking all code with PC-Lint is mandatory. Use PC-Lint during and after changes or
additions to the code.

2.2 Naming Conventions

Names with leading and trailing underscores are reserved for system purposes and should NOT
be used.

In general, all global names except for variables MUST have the common prefix ‘MFS ’
(external scope) or ‘mfs__’, (internal scope), standing for Minoris Financial Software.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 5

221

2.2.2

2.2.3

Module Names

Header files shall have the extension ‘.n’; source files shall have the extension . c’. Except for
the prefix, only lowercase letters should be used.

Files with an external scope, i.e. providing functionality to the outside world, must be prefixed

with ‘MF's_’; files internal to the project are prefixed with ‘mfs ™

Header files (external scope): MFS file name.h
Source files (external scope): MFS file name.c
Header files (internal scope): mfs file name.h
Source files (internal scope): mfs file name.c

Function Names

Function names in general should be written in lower case where an underscore should be used
as a word separator.

Global functions with an external scope must be prefixed with ‘MFS ' or rather with ‘mfs "’ if
their scope is internal. Functions with local scope are not prefixed:

Global (external scope): MFS func name
Global (internal scope): mfs func name
Local scope: func_name

Prototypes of global functions shall be declared in header files by using the keyword extern
and the function parameters shall be described in the function header.

All local functions and their prototypes shall have the keyword static in order to keep their
scope ‘inside’.

Typedefs and Structures

The basic types of char, int, short, long, float and double are replaced by newly
defined equivalents according to MISRA-C:2004 rule 6.3:

typedef unsigned char int8u; /* unsigned 8 bit integer =/
typedef signed char int8s; /* signed 8 bit integer =/
typedef char string; /* plain 8 bit character */
typedef unsigned short mfsbool; /* logical data type (MFS TRUE/MFS FALSE) */
typedef unsigned short intléu; /* unsigned 16 bit integer 2/
typedef signed short 1intlé6s; /* signed 16 bit integer */
typedef unsigned long int32u; /* unsigned 32 bit integer */
typedef signed long int32s; /* signed 32 bit integer 2/
typedef float float32; /* 32 bit, single precision floating point */
typedef double float64; /* 64 bit, double precision floating point */

Note: It is NOT allowed to define any types from pointers, e.g. typedef char* string

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 6

Fields in a type definition structure have to be prefixed with a data type specifier (see chapter
2.2.4); the name of the type also has to be prefixed (if global) and always ends with ‘Type’:

typedef struct

{
int32s s32Year;
int32s s32Month;
int32s s32Day;

}

mfs OleDataType;

Values in an enumerated type should be defined in capitals. The values of the constants shall
be assigned explicitly and, in case of a global scope, the name of the type has to be prefixed:

typedef enum
{
ICMA
SIFMA
US_TREASURY
MOOSMUELLER
}
MFS_YieldMethod;

([}
w N PO
S S~ S

2.2.4 Variables and Function Parameters

The readability of variables and function parameters is supported by using capitalizing.
Depending on the data type, the whole name has to be prefixed as follows (except for counter
variables like i, 7, k, 1):

Type Specifier
int8u u8
int8s s8
string str
mfsbool b
intlé6u ulé6
intle6s sl6
int32u u32
int32s s32
float32 £32
float64 fo4
structure t

Variables with global scope are prefixed with a scope specifier:

Global (external scope): g (i.e. gf32vVarName)
Global (internal scope / module level): m (i.e. msl6VarName)
Local scope and function parameters: [none]

Pointer variables are specified as follows:

Pointer specifier: p (i.e. *pf64VarName)

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines

2.2.5

Arrays are specified as follows:

Array specifier: a (i.e. as32VarName)

The naming convention of variables is specified as follows:

Sequence of specifiers: <scope><pointer><array><type>VarName

All variables with internal scope at module level must be declared static. Exported variables
must be specified by using the keyword extern.

Macros

Macros are always given in capitals and the words are separated by an underscore:

General macros: MACRO DEFINITION

MFS-specific with global scope: MFS MACRO DEFINITION

Try to avoid function-like macros according to MISRA-C:2004 rule 19.7. Functions should be
generally preferred as they provide a safer calling mechanism.

2.3 White Space

23.1

2.3.2

Adding white space in the form of blank lines, spaces, and indentation significantly improves the
readability of the code.

Blank Lines

Make careful use of blank lines to separate logical code structures. There should always be two
empty lines before a new function declaration starts in order to separate the functions properly.

Spacing

Never use spaces around the following primary operators:

-> structure pointer operator p->member
structure member operator s.member
[1 array subscripting ali]

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 8

Always use a space between a function name and the opening parenthesis when declaring or
prototyping a function;

intlés func name (void)

Do not use a space between a function name and the opening parenthesis when calling a
function:

func name () ;

Commas and semicolons are never preceded but always followed by a space:

func name(x, y, z);

for (1 = 0; i < 10; i++)

Binary operators and the ternary operator are always written with a space between them and
their operands:

X +y = z;

i += 2;
n>07?n: -n;
a <b

c >=

Never use spaces between unary operators and their operands:

!value
~bits

++i

S
(int32s) x
*ptr

&x

sizeof (x)

Expressions within parentheses or argument lists are written with no space after the opening
parenthesis and no space before the closing parenthesis:

func name (x, y, z);

x = (a + b) * c;

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 9

Keywords are always followed by one space character:

if (a > b)

while (x > 0)

for (1 = 0; i < 10; i++)
switch (x)

return (y)

2.3.3 Indentation

Indentation should be used to show the logical structure of the code. TAB characters (ASCII
character 0x09) MUST NOT be used as different editors may use different tab sizes causing
different indentation levels.

Indentation MUST be done using the SPACE character (ASCIl character 0x20), where the
indent level of the code is always 2 spaces with the exception of variable definitions, which
always start in column 1.

All functions should be indented like this:

<return type> <function name> (<args>)
{

<variable definitions>

<body 1>

{
<body 2>
{

<body 3>

}

}

}

2.3.4 Continuation Lines

Operations that will not fit on one line should be divided into separate lines, putting the operator
AT THE END of the broken line rather than at the start of the continuation line.

The indentation should be properly related to the logical context with regard to parentheses
and/or operations:

if ((<condition 1> || <condition 2>) &&
(<condition 3> || <condition 4>) &&
(<condition 5>))
{
<var 1> = (<var 2> + <var 3> + <var 4>) /
(<var 5> - <var 6>);

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 10

2.3.5 Bracing Style

Braces shall follow the Braces-Stand-Alone method, also called ,Extended Bracing Style®. The
curly brace pair should be placed on separate lines aligned with the surrounding statement:

intlé6s func name (int32s s32a, int32s s32b, int32s *ps32Result)
{
intl6s sléretval;

sléretval = MFS_ ERROR;
if (s32a > 0)
{
*ps32Result = s32a;
sléretval = MFS OK;
}

else
{
*ps32Result = s32b;
sléretval = MFS_OK;
}

return sléretval;

(Please note that the ,pointer” qualifier ** is placed next to the parameter/variable name.)

2.4 Comments
= All comments have to be in English.
= Always use C style comments (/* */); C++ style comments (//) are not allowed.
= |tis not allowed to have code following a comment on the same line.
= Nested comments are not allowed.
= Commenting out blocks of code is not allowed.

u Use in-line comments to document variable definitions and block comments to describe
computation processes.

= Every function shall have a comment that describes its purpose

2.4.1 Block Comments

Block comments should be written at the same level of indentation as the code block they
describe:

This is a block comment. The comment should be written in full
sentences, with correct punctuation. Use this form of comment
if more than one sentence is required. Each comment line should
begin with an asterisk and the comment terminator should be at
the end of the last comment line. */

* X ok ok %

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 11

2.4.2 In-Line Comments

Comments to the right side of a code line should comment only that line. These comments
should be separated far enough from the code statements.

If more than one short comment appears in a block of code or data definition, they should all be
started from the same column:

008 /* a short in-line comment */

e /* a little longer in-line comment */

2.5 Control Structures

Although C does not require braces around single statements, braces MUST also be used for
single statement blocks to help improve the readability and maintainability of the code.

If the span of a block is large (about 50 lines or more) or if there are several nested blocks,
comment closing braces to indicate what part of the process they limit.

Use an end-line comment also to identify which #if or #ifdef statement a particular
#endif statement closes. When using #else conditions, mark both the #else and the
#endif statements with the negated condition (i.e. preface it with not).

2.5.1 |If-Statement

Always use this coding style for i £-statements:

if (<condition>)
{

P

}

else if (<condition>)

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 12

2.5.2 Switch-Statement

Every switch selection statement contains a default clause, and every clause is terminated
with break:

switch (<state>)
{ case CASE NR 1:
breaéi
case CASE NR 2:
bréééi
case CASE NR 3:
bréééi
default:

’

break;

2.5.3 For Loop

The for-statement looks like this:

for (<initializations>; <test conditions>; <increment value>)

{
}

2.5.4 While Loop

The while-statement has to be coded as follows:

while (<tested condition is satisfied>)

{
}

2.5.5 Do...While Loop

Write the do..while-statement as stated below:

while (<condition is satisfied>);

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Programming Guidelines 13

2.6 Functions

Every function should be preceded by a block comment prologue, giving a short synopsis of the
function’s purpose and how to use it (for templates please refer to Appendix A).

2.6.1 Scope and Calling Scheme

Functions are classified with regard to their scope. Under consideration of the naming
convention given in chapter 2.2.2, the following calling scheme has to be used:

MFS func name

Visible to
Outside World

£ £ f
mfs unc_name unc_name
— _ < —

Invisible to

o
=
=
o
=
(2]
2
>
o

Functions with external scope (MFS func name) are only wrapper functions performing
argument checks to ensure that always valid parameters are passed to internal functions.

2.6.2 Function Results

Every function returns an error status code as the function’s result (0 if succeeding). The
function result is provided in an out-mode parameter.

This is, however, not necessary for functions returning void.

2.6.3 Function Parameters

Structures should not be passed to parameters; a pointer to the structure should be used
instead.

Use const for pointer parameters if they have to stay unchanged.

2.6.4 Error Messages

If a function returns an error indication and/or a call to that function implies a call to any sub-
function which returns error information for its part (regardless of whether the sub-function
belongs to the project or not), then the function being called originally should provide an error
message in an out-mode parameter at the very end of the parameter list.

Functions with internal or local scope (mfs func name, func name) provide two types of
error messages depending on whether the error is defined or undefined.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Program Organization 14

Defined errors are displayed as text strings describing why a function call couldn’t be performed
successfully.

An undefined error occurs if a function call fails. An error message is being generated starting
with “4Internal error:” followed by the name of the function which induced the error and,
given in parentheses, the name of the module and the line number where the error has been

detected:
Defined error: “<error message>” (i.e. “Computation is not possible”)
Undefined error: “#Internal error: <func name> (<file name>:<line number>)”

Functions with external scope (MFS func_name) return error messages either in the way as
stated above (as a result of an internal function call) or in the following way in case the error
message was caused by a parameter check:

“<parameter> is not valid”

3 Program Organization
In this chapter the source (. c) and header (. h) file layout will be introduced and explained. Both

types of files are laid out in a similar fashion as shown below and every module that is being
created has to comply with that layout.

For templates of source and header files please refer to Appendix B.

The templates also contain specific compiler directives which are necessary to allow multiple
inclusions of header files by the application modules and to allow inclusion of a header by its
own C-source file.

3.1 Header File Layout
Every header file consists of the following sections:
®= File Header
= Version History
®= Modules used
= Definitions and Macros
= Typedefs and Structures
= Exported Variables
= Exported Functions

= EOF

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Program Organization 15

3.1.1

3.1.2

3.1.3

3.1.4

File Header

General information describing the file will be found in the file header, where the following items
must be present:

= Project: A short description of the project’s or product’s name where the module or
file has been created for.

u Filename: The filename shall be treated as case sensitive. It is not allowed to add
drives or directories.

= Version: The current version number of the file that keeps track with the number in
the version control database.

= Date: The date of change when the last version number was created.

= Copyright: Each year a version of the file has been created in should be put in the
copyright notice followed by the company’s name.

Version History
The version history overview consists of a block of comments describing each change in
chronological order starting with the ‘Original Version’ as the first block. For each new version of

the file a block has to be added to the version history list, where the last block describes the
current file version. The following items must be present:

= Version: The version number for the changes described.

= Date: The date of change to this version.

= Revised by: Responsible person for this version.

= Description: For the first version ‘Original Version’ has to be put here. In the subsequent

revisions the description must exactly reflect the changes done to the file.
The changes need to be documented as clearly as possible.

Modules Used

Under this section all modules that are used have to be listed using the #include statement.
C-standard header files have to be included first and, separated by an empty line, local include
files will be listed after this.

It is recommended to list all files being included in an alphabetical order.

Definitions and Macros

Under this section all definitions and macros which have to be known outside the modules have
to be listed. Logical groups of definitions and macros have to be ordered together by always
starting in column 1.

The different groups can be separated by using proper comment blocks and empty lines.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Program Organization 16

3.1.5 Typedefs and Structures

Type definitions with a global scope are placed under this section by following the rules defined
in chapter 2.2.3.

3.1.6 Exported Variables

In this section all exported variables have to be declared by using the keyword extern.

3.1.7 Exported Functions

In this section the exported functions of the modules are placed with their function prototypes. A
comment block has to be added that gives a good description of the meaning and use of the
functions and their arguments.

3.1.8 EOF

This is the end of file marker section. Nothing should appear below this block.

3.2 Source File Layout

Most of the sections in the source file are the same as already described for header files. Extra
sections are: Prototypes of Local Functions, Global Variables and Local Functions. The
sequence of sections is as follows:

®= File Header

= Version History

®= Modules used

= Definitions and Macros

®= Typedefs and Structures

= Prototypes of Local Functions
= Exported Variables

= Global Variables

= Exported Functions

®= Local Functions

= EOF

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Program Organization 17

3.2.1 File Header

Refer to chapter 3.1.1 for a detailed description of this section.

3.2.2 Version History

Refer to chapter 3.1.2 for a detailed description of this section.

3.2.3 Modules Used

Refer to chapter 3.1.3 for a detailed description of this section.

3.2.4 Definitions and Macros

Refer to chapter 3.1.4 for a detailed description of this section.

3.2.5 Typedefs and Structures

Refer to chapter 3.1.5 for a detailed description of this section.

3.2.6 Prototypes of Local Functions

In this section the prototypes of the local functions of the source file are placed with the keyword
static.

3.2.7 Exported Variables

In this section all exported variables have to be declared WITHOUT the keywords static or
extern. By omitting static, the variable is exported or public by default.

3.2.8 Global Variables

In this section all global variables are declared with the keyword static. The scope of these
variables is global to the source file.

The variable names should be placed one below the other, preferably left aligned in the same
column and on the same indent position. The declaration should start at the left margin.

3.2.9 Exported Functions

In this section the implementations of the exported functions of the module are placed.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Program Organization 18

3.2.10 Local Functions
The function declaration and the implementation of local functions are placed under this section

in the source file. All functions appearing in this section must have a corresponding function
prototype in the section ‘Prototypes of Local Functions’.

3.2.11 EOF

This is the end of file marker section. Nothing should appear below this block.

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Appendix A

19

4 Appendix A

4.1 Comment Prologues of Functions

Functions are preceded by a block comment prologue that gives a short description what the
function does and (if necessary) how to use it.

Notice that on the very first line each comment shows a number representing the sequence of
the function’s appearance within the code, followed by a hint of the function’s scope, i.e.
exported (exp) or local (loc).

4.1.1 Prologue of Function Prototypes

Template for function prototypes; note that each parameter will be described as well:

/* == 10 X | mmm oo o

* Function:
*

* Purpose:
*

*

* Comments:
*

*

*

* Returns:
*

mfs__year fraction

Calculates the year fraction as a decimal number representing the number of
days between two dates.

1) Function returns failure if a NULL pointer is passed to 'pf64Result'.
2) Calling function has to pass space for 'pstrErr' and needs to take
care of valid parameter inputs.

MFS_OK (0) Success
MFS_ERROR (-1) Failure

extern intlés mfs__year fraction (

int32s s32StartDate, /* IN: OLE-compliant serial day number
int32s s32EndDate, /* IN: OLE-compliant serial day number
intl6s sléDayCount, /* IN: 0=30/360(ICMA), 1=30/360(SIFMA),
* 2=act/360, 3=act/365, 4=act/act
mfsbool bEoM, /* IN: flag for end-of-month convention
float64 *pfé4Result, /* OUT: function result
string *pstrErr); /* OUT: error message if function returns failure

4.1.2 Prologue of Function Implementations

Use this template for function implementations:

/* == 10 ERP | ===

Function:

Purpose:

O

*

*
N
©
>
=}

«Q
o
el

intlés mfs year fraction

{

mfs_year fraction

Calculates the year fraction as a decimal number representing the number
of days between two dates.

None
Developer Action Remarks
Armin Kurt Created None

(int32s s32StartDate, int32s s32EndDate, intlé6s sl6DayCount, mfsbool bEoM,

float64 *pf6dResult, string *pstrErr)

/* function body left out */

}

*/
*/

*/
*/
*/
*/

Minoris Financial Software

C Coding Standard and Programming Guidelines Version: 1.3.6

Appendix B 20

5 Appendix B

5.1 Header File Template

/*
Kk Kk Kk KKK KKK KKK KK KK
Hok Kk ok kK k ok ok kkkkkkkkkkkkkkkkkkkkkkkxkkkxkkkkx C HEADER FILE %% %k ok %k ok ok %k ko sk %k ok o sk %k ok ok ok % k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

KK LR R R R R R R RS KK
KK * K
** project ToXXX *x
** filename : (...).h *x
** version ToXxX *x
** date ToXxX *x
KK * K

B R R R R R R R

* *
** Copyright (c) yyyy Minoris Financial Software ol
** All rights reserved. *x
* x * x

e

VERSION HISTORY

Version © XXX
Date XXX
Revised by : xxx
Description : xxx

*/

#ifndef (...) INCLUDED

#define _(...)_ INCLUDED

KK kK ok Kk kK kK ok Kk ok K ok K ok kK ok K ok K ok ok K ok ok o ok K ok ok K ok K ok ok ok ok K ok K ok kK ok ok ok ok K ok ok K kK ok ok ok ok K ok K ok kK ok ok ok Kk ok Kk ok kK ok ok Kk ko k kK

/** **/
Jxx MODULES USED **/
/** **/

KK kK ok Kk kK kK ok Kk ok K ok K ok ok Kk ok K ok K ok ok K ok ok o ok K ok ok K ok K ok ok ok ok K ok K ok kK ok ok ok ok K ok ok K kK ok ok ok ok K ok ok ok K K ok Kk kK ok kK ok Kk ok Kk k Kk k Kk kK /

KK kK ok K kK Sk kK ok Kk ok K ok K ok ok Kk ok K ok K ok ok K ok ok ok K ok ok K ok K ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K kK ok ok ok ok K ok K ok kK ok ok ok Kk ok Kk k Kk Kk kK Rk k ok K/

/** **/
Ve DEFINITIONS AND MACROS *x/
/** **/

/% K ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok k kK /

/% K ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ko ok ok ok ok K ok ok K ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR ok ok ok k ok k ok ok /

/** **/
Ve TYPEDEFS AND STRUCTURES *x/
/** **/

/% K ok ko ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok ok ok kK /

/% K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR ok kK k ok k kK /

J*x xx/
/o EXPORTED VARIABLES *x/
J*x xx/

KK kK ok K ok ok K kK ok K ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok ok K ok K ok K K ok Kk kK ok ok Kk Kk kK ok kK ok ok ok k kK /

#ifndef (...) C SRC
#endif

KK kK ok K ok ok K ok kK ok K ok ok K ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok kK ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok Kk ok K ok kK ok Kk ok Kk ok Kk ok ok kK Kk Kk kK /

Ve x%)
/o EXPORTED FUNCTIONS *x/
J*x xx/

KK kK ok K ok ok K ok ok Kk ok K ok ok K ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok K ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok K ok Kk kK ok ok K ok Kk kK ok kK ok kR k ok K/

#endif /** _(...)_ INCLUDED **/

KKK Kk Rk ok ok ok Kk ok kK k kK kK k kA hhhk Kk kh ok ok kK kK k kA k Kk k Kk kk ko kk kA h kA h kK kkkkkkkh Ak hhkkk Kk kkkkkkk Kk khkkkkkkkkkkx /

/** *x)
Vi END OF FILE *x/
/*k k*/

KKK KRk k ok ok Kk ok kk ok k Kk Kk Kk kA kK h ok kk ok ok Kk Kk Kk KAk Ak kA kkkh Kk Ak Ak KAk Ak kkkkk Kk Kk khhkkkkkkkkk Xk Kk khkkkkkkkkkk k% /

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

Appendix B 21

5.2 Source File Template
/*

Kok Kk K kKKK KKK KKK KK KK
Hok ok ok ok ok ok kok ok kkkokkxkkkkkkkkkkkkkkkkkkkkkxkkkxx C SOQURCE FILE %% %ok sk %k ok ok sk k ok s sk %k ok o sk % Kk ok ok % %k ok ok s ok ok ko ok ok ok ok k% ok

** Kok ok ok ok ok ok ok ok k ok ok ok ok kok ok kok * %
* x * *
** project I XXX *x
** filename : (...).cC **
** version T XXX * %
** date TOXXX * K
* x * *

hkkkhkkhkkhkhkhkkhkhkhkkhhkhhhhhhhhhhhkhhkhhhhkhhhhhhhhkhhhkkhkkkk k%%

* x * %
** Copyright (c) yyyy Minoris Financial Software ol
** All rights reserved. x
* x * %

hkkkhkkhkkhkhkhkhkhkhkhkhkhkhk Ak hkkhkkhkkhkkkk k%%

VERSION HISTORY

Version XXX
Date XXX
Revised by : xxx
Description : xxx

*/
#define (...) C SRC

/% K ok ko ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok Kk ok Kk ok ok k kK /

/** **/
Ve MODULES USED *x/
/** **/

/% K ok ko ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ko ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok K ok K ok kK ok ok Kk kR ko ko Kk kK /

/% K ko ok ok ok ok ok ok o ok ok ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok ok ok ok ok K ok ok o ok K ok ok K ok ok K ok ok ok K ok ok K ok ok K ok ok K ok Kk kK ok ok Kk kK /

/** **/
Ve DEFINITIONS AND MACROS *x/
/** **/

/% K ok ok ok ok ok ok ok ok ok K ok ok ok ok K ok ok K ok ok ok ok ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ko ok K ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok K ok ok ok ok ok Kk ok kR kK kK k kK /

KK kK ok K ok kK Sk kK kK ok ok K ok K ok kK ok K ok K ok ok K Sk ok o ok Kk ok K ok K ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok K ok K ok K ok K K ok Kk ok Kk kK ok kK kK ok ok Kk ok Kk ok K/

Jx *x /
/xx TYPEDEFS AND STRUCTURES *x/
Jxx *x /

KK kK ok ok K ok ok K ok kK ok K ok ok K ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok K ok ok ok ok K o ok K ok ok K ok ok o ok Kk ok K ok ok K ok ok ok ok K ok K ok kK ok ok Kk kK ok ok Kk ok k Kk kR ok Kk kK ok kK /

KK kK ok K ok ok K ok kK ok K ok ok K ok ok K ok ok K ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok K ok ok K ok ok o ok K ok ok K ok ok ok ok K ok K ok kK ok ok K ok Kk ok Kk k Kk ok Kk Kk ok Kk ok kK k ok K/

Ve x%/
J*x PROTOTYPES OF LOCAL FUNCTIONS *%/
Ve x%/

KK kK ok K ok ok K ok kK ok K ok ok K ok K ok kK ok K ok K ok ok K ok ok K ok K ok ok K ok kK ok ok ok ok K ok K ok ok K ok ok ok ok K ok ok K ok kK ok ok ok ok Kk ok Kk ok K ok k Kk kK ok ok Kk ok k Kk Kk kK Rk Kk kK /

/% K ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok Sk ok Kk k ok k kK /

/** **/
Vs EXPORTED VARIABLES *x/
/** **/

/% K ok ko ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR kK Kk ok k kK /

/% K ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok o ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok Sk ok Kk ok ok k kK /

/** **/
Ve GLOBAL VARIABLES *x/
/** **/

/% K ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok o ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok kR ok Kk ok ok k kK /

/% K ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok ok ok ok K ok ok ok ok ok ok ok K ok ok K ok ok o ok K ok ok K ok ok o ok ok ok ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok ok Sk ok Kk k ok k kK /

/** **/
Ve EXPORTED FUNCTIONS *x/
/** **/

[KK kK ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok Kk kK ok ok K ok Kk ok Kk ok Kk ok Rk ok ok kK ok kK k ok Kk kR k Kk kK k kK /

KK ok ok ok K ok ok ok ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok K ok K ok kK ok ok Kk ok Kk ok Kk ok Kk k ok ok kK ok ok Kk ok Kk kK /

/** **/
Vs LOCAL FUNCTIONS *x/
/** **/

[KK kK ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok o ok K ok ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K ok ok K ok ok K ok ok ok Kk ok K ok kK ok kR kK ok ok Kk ok Rk kK kK ok k Kk ok Kk kR ok Kk ok Kk kK /

[KK kK ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok K ok K o ok K ok ok K ok ok K ok K ok ok K ok ok K ok ok ok ok K o ok K ok ok K ok ok ok ok K ok ok K ok ok ok ok Kk kK ok ok K ok ok Kk kK ok ok Kk ok Kk k ok kK ok ok Kk ok Kk kK /

/** x5/
Vo END OF FILE *x/
/** x5/

KKK KRk ok ok ok Kk ok k Kk kK kK k kA k Kk k kK k ok ok k ok h Kk Ak kA k kA k Kk kh Kk h Kk Ak kA hk kA kkkkkkkh kA kkhkkk Ak kkkkkkk Kk kkkkk Kk kkkkkx /

Minoris Financial Software C Coding Standard and Programming Guidelines Version: 1.3.6

	Table of Contents
	1 Introduction
	1.1 References

	2 Programming Guidelines
	2.1 General Rules
	2.2 Naming Conventions
	2.2.1 Module Names
	2.2.2 Function Names
	2.2.3 Typedefs and Structures
	2.2.4 Variables and Function Parameters
	2.2.5 Macros

	2.3 White Space
	2.3.1 Blank Lines
	2.3.2 Spacing
	2.3.3 Indentation
	2.3.4 Continuation Lines
	2.3.5 Bracing Style

	2.4 Comments
	2.4.1 Block Comments
	2.4.2 In-Line Comments

	2.5 Control Structures
	2.5.1 If-Statement
	2.5.2 Switch-Statement
	2.5.3 For Loop
	2.5.4 While Loop
	2.5.5 Do…While Loop

	2.6 Functions
	2.6.1 Scope and Calling Scheme
	2.6.2 Function Results
	2.6.3 Function Parameters
	2.6.4 Error Messages

	3 Program Organization
	3.1 Header File Layout
	3.1.1 File Header
	3.1.2 Version History
	3.1.3 Modules Used
	3.1.4 Definitions and Macros
	3.1.5 Typedefs and Structures
	3.1.6 Exported Variables
	3.1.7 Exported Functions
	3.1.8 EOF

	3.2 Source File Layout
	3.2.1 File Header
	3.2.2 Version History
	3.2.3 Modules Used
	3.2.4 Definitions and Macros
	3.2.5 Typedefs and Structures
	3.2.6 Prototypes of Local Functions
	3.2.7 Exported Variables
	3.2.8 Global Variables
	3.2.9 Exported Functions
	3.2.10 Local Functions
	3.2.11 EOF

	4 Appendix A
	4.1 Comment Prologues of Functions
	4.1.1 Prologue of Function Prototypes
	4.1.2 Prologue of Function Implementations

	5 Appendix B
	5.1 Header File Template
	5.2 Source File Template

